
CS378 - Autonomous 
Vehicles in Traffic II

Week 3a - Probability
(Based on slides by Andrew Moore)



Real-Valued Random Variable

● Boolean
○ A can be {true, false}
○ A: It will rain tomorrow

● Discrete
○ A can take a value from a given set
○ A: number of years it will take for me to graduate

● Continuous
○ A takes all real values
○ A: my distance to the wall



Probability

● The probability P(A = x) is the fraction of 
"worlds" in which A will turn out to be x.

● For boolean and discrete random variables, 
we define explicit probability values

● For continuous random variable, we define a 
probability density function (pdf)

For instance, the pdf of me being a 
certain distance from the wall could be 
a gaussian with a mean of 5 meters



Conditional Probability

● P(A = x|B = y) - The fraction of worlds 
(where B is y) in which A is x

P(F)

P(H)

P(F): probability of waking up with the flu = 1/40
P(H): probability of waking up with a headache = 
1/10
P(H|F) = 1/2

● If A and B are independent boolean random 
variables, what is the conditional probability 
P(A|B)?



Inference

● What is the probability of having the flu if you 
wake up with a headache?

P(F)

P(H)

P(F): probability of waking up with the flu = 1/40
P(H): probability of waking up with a headache = 
1/10
P(H|F) = 1/2

● We need P(F|H) = P(F and H) / P(H)
= (1/40 * 1/2) / 1/10
= 1/8



But wait...

● What we did is an example of Bayes' rule
● P(F|H) = P(F and H) / P(H)
● i.e. P(F|H) = P(H|F) * P(F) / P(H)



CS378 - Autonomous 
Vehicles in Traffic II

Week 3a - Expectation Maximization



Probability Density Function

● A probability density function gives an 
estimate of the distribution of output values 
given the input parameters.

● In the case of a normal distribution (i.e. 
gaussian), the pdf looks something like:

● We can calculate the probability by taking 
the area under the curve:





Samples

● Now, the pdf here defines how likely a given 
observation x is.

● Using this pdf, you can draw a number of 
samples from this distribution

● Aside: to get samples from an arbitrary pdf, 
use the cummulative pdf trick.



What do 10 samples look like?

[-1.05, -0.94, -0.49, -0.60, -0.24, -0.04, -0.37, -0.76, -0.69, 0.87]



Likelihood

● Now let's take the reverse scenario. I give 
you a distribution, and tell you that it is from 
a gaussian. What can you say about the 
input parameters that generated this data?

● Likelihood is defined as the probability some 
set of input parameters generated the given 
output:

or



Likelihood

● We can define the likelihood of the same pdf 
by changing the arguments of the pdf:



Maximum Likelihood Estimation

● Maximum Likelihood Estimation is the 
process by which we can determine the 
parameters that most likely explain the data.

● So what we are trying to do is find the theta 
which produces the maximum 

● Since we just inferred that: 
● This means that MLE boils down to:



Let's take an example of MLE

● What is the maximum likelihood of this 
distribution?

[-1.05, -0.94, -0.49, -0.60, -0.24, -0.04, -0.37, -0.76, -0.69, 0.87]



A closed form solution perhaps?

[-1.05, -0.94, -0.49, -0.60, -0.24, -0.04, -0.37, -0.76, -0.69, 0.87]

How did we do?



Why did we not do well?

● Unfortunately 10 samples can sometimes be 
insufficient to capture the distribution!

● Maximum likelihood estimation just gave us 
the most likely answer that explained this 
data.

● What would have happened if we had more 
data points from the true distribution? 



With a 1000 samples

● Mean: 0.044
● Standard Deviation: 1.003



MLE Summary

● Likelihood explains some a set of given data 
using different input parameters

● Likelihood values only mean something 
when compared against other such values

● Maximum likelihood estimation is producing 
parameters that most likely produced the 
data.

● Depending on the domain, we can 
sometimes do closed form analysis to obtain 
the MLE parameters.



● When all data is given, we can do MLE to 
obtain parameters.

And on to the tutorial...



Expectation Maximization

● When some of the data is hidden, it is no 
longer possible to calculate the MLE 
parameters directly 

● EM is a maximum likelihood estimation 
technique when there is hidden data.

● These hidden variables are called latent 
variables.

● In the paper:
○ What data is hidden?
○ Why can't we do parameter estimation without this 

data?



How does EM work?

● Assume arbitrary values for the input 
parameters.

● Compute soft assignments for latent 
variables

● Calculate parameters using MLE now that 
you have all the observation data.

● Repeat till parameters no longer change.



● Essentially we need to compute the 
probabilities of this data point belonging to 
each coin

How to compute assignments?

● For any given point of data (HTTTHHTHTH), 
we need to find the missing information (i.e. 
which coin did this data point come from?)



How to compute assignments?
● We'll use Bayes' rule!!

● Now since the coins were selected randomly

● This gives us:



How to compute P(xi|za)

● P(xi|za) is the probability of seeing a 
particular set of coin tosses given a 
particular coin

● If you roll an unbiased coin 10 times, are you 
more likely to get 10 heads in a row, or 5 
heads in a row and then 5 tails in a row?

● If you roll an unbiased coin 10 times, are you 
more likely to see a total of 10 heads? or 5 
heads and 5 tails?



How to compute P(z|a) and P(z|b)

● Let's take a look at the link I emailed you
● http://math.stackexchange.com/questions/25111/how-does-expectation-maximization-work

http://math.stackexchange.com/questions/25111/how-does-expectation-maximization-work
http://math.stackexchange.com/questions/25111/how-does-expectation-maximization-work


Hard Assignments



Soft Assignments



Hard vs Soft Assignments

● Hard assignments mean a "greedy" strategy
● Soft assignments are more forgiving. Take 

the first assignment here: 

● The probability of this belonging to either 
coin is fairly close (i.e 0.45 and 0.55). It 
might not make sense to assign this to a 
single coin alone

● In practice both may work decently well.



So how did we do?

● The true values (without missing data) 
produced a result of 0.8 and 0.45

● Using EM, we converged at 0.8 and 0.45.
● Not bad!



Food for thought #1

● Would the output be different if we started 
with a different initial guess?



Food for thought #2

● What if the true assignments were like this? 
What would     and     be 

● How would the output of EM change? 
Would you say we still did well? 



Food for thought #3

● Let's say if we repeated the experiment a 
1000 times instead of 5 times. Would the 
output of EM always be closer to the true 
values or not?
○ Think about this one (or even better, code it up!). I'll 

discuss it on Wednesday



k-means

● k-means is a data clustering algorithm that is 
(almost) an example of EM. soft k-means is 
an example of EM

● I give you a data set of 1000 points in x,y 
space, and tell you to give me 5 clusters 
centers. How would you go about this 
problem?

● k-means approximates probabilities with 
distances



k-means

● Choose arbitrary cluster centers
● Assign each point to the closest cluster 

center (E step)
● Now that you have individual clusters, 

calculated the mean of each cluster (M step)
● Repeat this process until the cluster centers 

no longer change



soft k-means

● Choose initial cluster centers randomly
● Instead of hard assigning a point to a cluster 

center, soft assign it to all the cluster centers 
(E step)

● Use a weighted mean for each cluster to 
calculate the cluster center (M step)

● Repeat until convergence


