CS378 - Autonomous
Vehicles in Traffic li

Week 3a - Probability
(Based on slides by Andrew Moore)



Real-Valued Random Variable

e Boolean
o A can be {true, false}
o A: It will rain tomorrow

e Discrete
o A can take a value from a given set
o A: number of years it will take for me to graduate

e Continuous
o A takes all real values
o A: my distance to the wall



Probability

e The probability P(A = x) is the fraction of
"worlds" in which A will turn out to be x.
e [or boolean and discrete random variables,
we define explicit probability values
e For continuous random variable, we define a
probability density function (pdf)
For instance, the pdf of me being a

certain distance from the wall could be
a gaussian with a mean of 5 meters




Conditional Probability

e P(A =x|B =y) - The fraction of worlds
(where B is y) in which A is X

P(F): probability of waking up with the flu = 1/40
m P(F) P(H): probability of waking up with a headache =

[ U ] P(H|F) = 1/2

e |f A and B are independent boolean random
variables, what is the conditional probability

P(A|B)?



Inference

e \What is the probability of having the flu if you
wake up with a headache?

P(F): probability of waking up with the flu = 1/40
m P(F) P(H): probability of waking up with a headache =

[ U ] P(H|F) = 1/2

e \We need P(F|H) = P(F and H) / P(H)
=(1/40*1/2) / 110
=1/8



But walit...

e \What we did is an example of Bayes' rule
e P(F|H)=P(FandH)/P(H)
e i.e. P(F|H) = P(H|F) * P(F)/ P(H)



CS378 - Autonomous
Vehicles in Traffic li

Week 3a - Expectation Maximization



Probability Density Function

e A probability density function gives an
estimate of the distribution of output values
given the input parameters.

e |n the case of a normal distribution (i.e.
gaussian), the pdf looks something like:
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e \We can calculate the probability by taking
the area under the curve:

P(X =a;p,0) = f02(x)Az






Samples

e Now, the pdf here defines how likely a given

observation x is.
e Using this pdf, you can draw a number of
samples from this distribution

e Aside: to get samples from an arbitrary pdf,
use the cummulative pdf trick.



What do 10 samples look like?

[-1.05, -0.94, -0.49, -0.60, -0.24, -0.04, -0.37, -0.76, -0.69, 0.87]




Likelihood

e Now let's take the reverse scenario. | give
you a distribution, and tell you that it is from
a gaussian. What can you say about the
iInput parameters that generated this data?

e Likelihood is defined as the probability some
set of input parameters generated the given
output:

P(u,0|X) or P(0]X)



Likelihood

e \We can define the likelihood of the same pdf
by changing the arguments of the pdf:

P ( s O";’I? ) X f 2 (/1, ag l)



Maximum Likelihood Estimation

e Maximum Likelihood Estimation is the
process by which we can determine the
parameters that most likely explain the data.

e So what we are trying to do is find the theta
which produces the maximum P(4|X)

e Since we just inferred that: P(9|z) « P(z|6)

e T[his means that MLE boils down to:

argmaxy(P(x|0))

argmaxg(logP(x|0))



Let's take an example of MLE

[-1.05, -0.94, -0.49, -0.60, -0.24, -0.04, -0.37, -0.76, -0.69, 0.87]

0.0 .m. ,,,,,, . ]

e \What is the maximum likelihood of this
distribution?



A closed form solution perhaps?
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Why did we not do well?

e Unfortunately 10 samples can sometimes be
iInsufficient to capture the distribution!

e Maximum likelihood estimation just gave us
the most likely answer that explained this
data.

e \What would have happened if we had more
data points from the true distribution?



With a 1000 samples
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e Mean: 0.044
e Standard Deviation: 1.003




MLE Summary

Likelihood explains some a set of given data
using different input parameters

Likelihood values only mean something
when compared against other such values
Maximum likelihood estimation is producing
parameters that most likely produced the
data.

Depending on the domain, we can
sometimes do closed form analysis to obtain
the MLE parameters.



And on to the tutorial...

e \When all data is given, we can do MLE to
obtain parameters.

d Maximum likelihood
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Expectation Maximization

e \When some of the data is hidden, it is no
longer possible to calculate the MLE
parameters directly

e EM is a maximum likelihood estimation
technique when there is hidden data.

e These hidden variables are called latent
variables.

e In the paper:
o What data is hidden?

o Why can't we do parameter estimation without this
data?



How does EM work?

e Assume arbitrary values for the input
parameters.

e Compute soft assignments for latent
variables

e Calculate parameters using MLE now that
you have all the observation data.

e Repeat till parameters no longer change.



How to compute assignments?

e For any given point of data (HTTTHHTHTH),
we need to find the missing information (i.e.
which coin did this data point come from?)

v,  HTTTHHTHTH
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e Essentially we need to compute the
probabilities of this data point belonging to

each coin
D ( Za ];jl;’ ) P ( <b ‘4'1?’ i)



How to compute assignments?

. We'll use Bayes' rule!!
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« Now since the coins were selected randomly
—> P(z,) = P(z,) = 0.5

« This gives us: P(z4|z) =




How to compute P(x.|z )

e P(x|z ) is the probability of seeing a

particular set of coin tosses given a
particular coin

e |f you roll an unbiased coin 10 times, are you
more likely to get 10 heads in a row, or 5
heads in a row and then 5 tails in a row?

e |[f you roll an unbiased coin 10 times, are you
more likely to see a total of 10 heads? or 5
heads and 5 tails?



How to compute P(z|a) and P(z|b)

e Let's take a look at the link | emailed you

® http://math.stackexchange.com/questions/25111/how-does-expectation-maximization-work



http://math.stackexchange.com/questions/25111/how-does-expectation-maximization-work
http://math.stackexchange.com/questions/25111/how-does-expectation-maximization-work

Hard Assignments

d Maximum likelihood
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Soft Assignments

h2
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Hard vs Soft Assignments

e Hard assignments mean a "greedy" strategy
e Soft assignments are more forgiving. Take
the first assignment here:

:;.f:gw,o 0.55 ;,;o 22H,22T 28H,28T
e The probability of this belonging to either
coin is fairly close (i.e 0.45 and 0.55). It

might not make sense to assign this to a
single coin alone
e In practice both may work decently well.



So how did we do?

e The true values (without missing data)
produced a result of 0.8 and 0.45

e Using EM, we converged at 0.8 and 0.45.
e Not bad!



Food for thought #1

e \Would the output be different if we started
with a different initial guess?



Food for thought #2

e What if the true assignments were like this?
What would 9. and ¢ be
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e How would the output of EM change?
Would you say we still did well?



Food for thought #3

e Let's say if we repeated the experiment a
1000 times instead of 5 times. Would the
output of EM always be closer to the true

values or not?
o Think about this one (or even better, code it up!). I'l
discuss it on Wednesday



k-means

e k-means is a data clustering algorithm that is
(almost) an example of EM. soft k-means is
an example of EM

e | give you a data set of 1000 points in x,y
space, and tell you to give me 5 clusters
centers. How would you go about this
problem?

e k-means approximates probabilities with
distances



k-means

e Choose arbitrary cluster centers

e Assign each point to the closest cluster
center (E step)

e Now that you have individual clusters,
calculated the mean of each cluster (M step)

e Repeat this process until the cluster centers
no longer change



soft k-means

e Choose Iinitial cluster centers randomly

e Instead of hard assigning a point to a cluster
center, soft assign it to all the cluster centers
(E step)

e Use a weighted mean for each cluster to
calculate the cluster center (M step)

e Repeat until convergence



